Sample Paper - 2013
 Class - XI
 Subject - Mathematics

(Limits and derivatives, Complex N umber, Conic Section, Straight Line, 3D G eometry)

Time: 3hrs
M aximum Marks: 100

GENERAL INSTRUCTIONS:-

1. All questions are compulsory.
2. The question paper consists of 29 questions divided into three sections A, B and C. Section - A comprises of 10 question of 1 mark each. Section - B comprises of 12 questions of 4 marks each and Section - C comprises of 7 questions of 6 marks each.
3. Question numbers 1 to 10 in Sections - A have very short questions,
4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each: You have to attempt only one If the alternatives in all such questions.
5. Use of calculator is not permitted.

Section A

1. Evaluate $\lim _{x \rightarrow 2}\left(\frac{e^{x}-e^{2}}{x-2}\right)$
2. Find the equation of a line which is parallel to y-axis and passes through $(4,3)$.
3. Find the distance between $A(5,1,2)$ and $B(4,6,-1)$.
4. Find the multiplicative inverse of 1-i.
5. Find the equation of line which cuts of intercepts 3 and 2 from the axes.
6. Find the equation of a circle with centre (h, k) and touching the x-axis.
7. Prove that the points $A(3,-2,4), B(1,1,1)$ and $C(-1,4,-2)$ are collinear
8. Find the equation of parabola with focus at $F(3,0)$ and directrix $x=-3$.
9. Evaluate: $\lim _{x \rightarrow 1}\left(\frac{2}{1-x 2}+\frac{1}{1-x}\right)$
10. Find the least positive value of n, if $\left(\frac{1+i}{1-i}\right)^{n}=1$.

Section B

1 If $f(x)=\left\{\begin{array}{c}m x 2+n, x<0 \\ n x+m, 0 \leq x \leq 1 \\ n x 3+m, x>1\end{array} \quad\right.$, for what value f integer's m, n does the limits
$\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ exists.
2. Express $(3-4 i) /\{(4-2 i)(1+i)\}$ in the standard form (a $+1 \mathrm{~b})$:.
3. Find the equation of a line which is perpendicular to the line joining $(4,2)$ and $(3,5)$ and cuts off an intercept of length 3 on y-axis.
4. Find the equation of the curve formed by the set of all the points which are equidistant from the points $A(-1,2,3)$ and $B(3,2,1)$.
5. If $y=2 x$ is a chord of the circle $x^{2}+y^{2}=10 x=0$. Find the equation of the circle passing with this chord as diameter.

6 . Find the equation of the ellipse whose foci are $(0,-+5)$ and the length of whose major axis is 20.
7. Find the value of m so that the lines $y=x+1,2 x+y=16$ and $y=m x-4$ may be concurrent.
8. The vertex of a parallelogram $A B C D$ are $A(3,-1,2) B(1,2,-4)$ and $C(-1,1,2)$. Find the coordinate of the fourth vertex D .
9. Find the modulus and argument of the $(1-i) /(1+i)$ and express in polar form.
10. A straight line passes through the point (I, m) and this point bisects the portion of the line intercepted between the axes. Show that the equation of line is $x / 21+y / 2 m=1$.
11. Find the equation of hyperbola with centre at the origin, length of the transverse axis 6 and one focus at $(0,4)$.
12. Differentiate: $3^{x} /(x+\tan x$

Section C

1. Differentiate $\operatorname{Sin} x^{2}$ with first principle.
2. Show that a real value of x will satisfy the equation $\frac{1-i x}{1+i x}=a-i b$ if $a^{2}+b^{2}=1$, where a, b are real.

Or

Evaluate $\sqrt{-5+12 i}$
3. If p is the length of the perpendicular from the origin to the line $x / a+y / b=1$, then prove that $1 / p^{2}=1 / a^{2}+1 / b^{2}$.
4. The cable of uniformly loaded suspension bridge hangs in the form of a parabola. the roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . find the length of supporting wire attached to the roadway 18 m from the middle.
5. Find the coordinate of the focus and the vertex, the equations of the directrix and the axis, and length of latus rectum of $y^{2}=12 x$.
6. Find the ratio in which the joins of $A(2,1,5)$ and $B(3,4,3)$ is divided by the plane $2 x+2 y$ $2 z=1$. Also find the coordinates of the point of division.
7. The line through $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$ at right angle. Find the value of h.

Praveen Singh

Key is available on praveenpgdca@gmail.com
For more queries call -9453672155, 8400009290

